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NAS Assessment of intraseasonal to interannual (ISl)
climate prediction and predictability

* Operational ISI prediction models should be improved
to represent stratosphere- troposphere interactions.

* Relatively long-lived (up to two months) atmospheric
anomalies can arise from stratospheric disturbances.

* In sensitive areas such as Europe in winter, experiments
suggest that the influence of stratospheric variability on
land surface temperatures can exceed the local effect of
sea surface temperature.

* Additionally, while our weather and climate models do not
often resolve or represent the stratospheric Quasi-Biennial
Oscillation very well, it is one of the more predictable
features in the atmosphere, and it has been found to
exhibit a signature in ISI surface climate.



Downward progression of Northern Hemisphere Annular
Mode (NAM)
(Baldwin and Dunkerton, 2001)

Weak Vortex Regimes
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e Extreme events in the stratosphere are followed by anomalous
pattern at the surface that resemble the NAM

e Extreme stratospheric events may provide forecast potential for
weak 3to 4
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Role of the Stratosphere in the

Climate System

* Troposphere and stratosphere are closely
coupled with impact of the troposphere on the
stratosphere dominating.

* Stratosphere provides an important pathway by

which tropospheric circulation anomalies can be
modified.

* Impact of stratosphere on the troposphere via
changes in the stratospheric basic state (due to
ozone depletion, volcanic aerosols)

* Degrading the representation of stratospheric
processes in GCMs has important implication for
modeling the tropospheric climate state, its
variability and its sensitivity to external forcing.



Model Data

* CFSRR (monthly mean output)
» Decadal runs with CFS (monthly mean
output)

* Thanks to Ed Schneider (COLA & GMU)
for sharing CFSv2 coupled model
output.

* AMIP runs with atmospheric component of
CFS (daily output)



Comparison between CFSv1 and v2
Zonal Mean Zonal Wind 60°N, 10hPa
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CFSv1 and CFSv2 have very different polar night jet climatologies.



Comparison between CFSv1 and v2
Zonal Mean Zonal Wind 60°N, 10hPa
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Leading Coupled Mode of Variability
of 50 and 1000hPa Height Fields (JFM mean)
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Leading Coupled Mode of Variability
of 50 and 1000hPa Height Fields (JFM mean)
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Downward Zonal Mean Coupling

*Dissipation of wave activity in the stratosphere

*Westward acceleration of the stratospheric flow

*Downward progression of westward zonal mean anomalies

*Lack of wave activity relates to downward progression of eastward zonal wind anomalies

eat Flux Events
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Downward progression of NAM anomalies is determined
by upward flux of wave activity (Polvani and Waugh, 2004)



Downward Progression of Weak Polar Vortex
anomalies (Zonal Mean Component of Annular Mode)
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In AMIP simulations, SSW signature does not propagate into the troposphere.
Such analysis should be repeated based on daily CFSRR output and different
forecast leads as well as in free running coupled model.



Downward Wave Coupling \\\ . |
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500 hPa Wave 1 and total 500 hPa anomalies
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Wave One Propagation in
Northern Hemisphere

* In model, upward propagation of wave
activity is more disperse, especially in
Feb-Mar

* Model does not capture downward
wave coupling, most likely due to lack of
formation of reflective configuration of
stratospheric basic state

*In Mar-April, model shows very
different propagation characteristics for
planetary wave 1 than reanalysis
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Spin Up Effect in CFSRR



Vortex speed
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Zonal Wind at
different model
start dates
(Courtesy of
Emily Riddle)
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Spin up effect
4mo minus 2mo lead times
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Summary and Conclusions

 Climatology of stratospheric polar night jet is
significantly different between CFSv1 and CFSv2.

* In CFSv2 polar vortex is too weak in early winter
and too strong in late winter.

e Variability of stratospheric polar vortex is similar
between CFSv2 and Reanalysis.

* Dynamic coupling between the stratosphere and
troposphere is not well represented in the CFSv2.

* CFSv2 has a serious spin up problem that is
mostly pronounced in the stratosphere but can
also be seen in the troposphere - will degrade
any assimilated stratospheric information
with potential benefit for improved
tropospheric forecast.



Way forward
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» Analysis of CFSRR daily output of 45 day runs

« Raise model lid and increase number of vertical layers

* Include stratospheric gravity wave drag parameterization

Vision

* Improve stratospheric representation so that the CFS can generate
QBO



